- 1. Prove that the edges of a bipartite graph with maximum degree Δ can be colored with Δ colors such that no two edges that share a vertex have the same color.
- 2. A square matrix $A \in \mathbb{R}^{n \times n}$ is *doubly stochastic* if the entries of the matrix are nonnegative, and the sum of entries in every row and column is equal to one. The Birkhoff-von Neumann theorem states that one can write any doubly stochastic matrix as a convex combination of permutation matrices. Prove this theorem, and furthermore show that it suffices to use a convex combination of at most $n^2 n$ permutation matrices.
- 3. An independent set S in a graph G = (V, E) is a set of vertices such that there are no edges between any two vertices in S. If we let P denote the convex hull of all (incidence vectors of) independent sets of G = (V, E), it is clear that $x_i + x_j \leq 1$ for any edge $(i, j) \in E$ is a valid inequality for P.
 - (a) Give a graph G for which P is not equal to

$$\{ x \in \mathbb{R}^{|V|} : x_i + x_j \le 1 \qquad \text{for all } (i, j) \in E \\ x_i \ge 0 \qquad \text{for all } i \in V \}$$

(b) Show that if the graph G is bipartite then P equals

$\{x \in \mathbb{R}^{ V } : x_i + x_j \le 1$	for all $(i, j) \in E$
$x_i \ge 0$	for all $i \in V$.

4. (Echenique, Immorlica, Vazirani 1.15) Consider an instance of the stable matching problem with n doctors and n hospitals, each with capacity 1. Assume there are an odd number, k, of stable matchings. For each doctor d, order his or her k matches (with repetitions) according to his or her preference list and do the same for every hospital h. Consider assigning every doctor to the *median* hospital in his or her list. In this problem, we will prove that this is a stable matching.

To do so, first let μ_1, \ldots, μ_l be any l stable matchings. For each doctor-hospital pair (d, h), let n(d, h) be the number of matchings in $\{\mu_1, \ldots, \mu_l\}$ where d is matched to h. Define $x_{dh} := (1/l) \cdot n(d, h)$. Show that x is a feasible solution to the fractional stable matching LP. For any k with $1 \le k \le l$, let $\theta = (k/l) - \epsilon$ where $\epsilon > 0$ is smaller than 1/l. Consider the stable matching μ_{θ} formed by "rounding" the fractional stable matching x with θ via the procedure in class.¹ Show that μ_{θ} matches each doctor d to the k^{th} hospital in his or her ordered list of the l firms d is matched to in $\{\mu_1, \ldots, \mu_l\}$. Show similarly that hospital h is matched to the $(l - k + 1)^{\text{th}}$ doctor in its list.

Use this to show that the aforementioned "median assignment" forms a stable matching.

5. Form a project team (ideally with a group of 2-3 students). Please list your teammates and write a few paragraphs about the topic you plan to work on.

 $^{^1\}mathrm{See}$ also Echenique/Immorlica/Vazirani Chapter 1, Section 5.1