1. Prove that the edges of a bipartite graph with maximum degree Δ can be colored with Δ colors such that no two edges that share a vertex have the same color.
2. A square matrix $A \in \mathbb{R}^{n \times n}$ is doubly stochastic if the entries of the matrix are nonnegative, and the sum of entries in every row and column is equal to one. The Birkhoff-von Neumann theorem states that one can write any doubly stochastic matrix as a convex combination of permutation matrices. Prove this theorem, and furthermore show that it suffices to use a convex combination of at most $n^{2}-n$ permutation matrices.
3. An independent set S in a graph $G=(V, E)$ is a set of vertices such that there are no edges between any two vertices in S. If we let P denote the convex hull of all (incidence vectors of) independent sets of $G=(V, E)$, it is clear that $x_{i}+x_{j} \leq 1$ for any edge $(i, j) \in E$ is a valid inequality for P.
(a) Give a graph G for which P is not equal to

$$
\begin{aligned}
\left\{x \in \mathbb{R}^{|V|}: x_{i}+x_{j}\right. & \leq 1 & & \text { for all }(i, j) \in E \\
x_{i} & \geq 0 & & \text { for all } i \in V\}
\end{aligned}
$$

(b) Show that if the graph G is bipartite then P equals

$$
\begin{aligned}
\left\{x \in \mathbb{R}^{|V|}: x_{i}+x_{j}\right. & \leq 1 & & \text { for all }(i, j) \in E \\
x_{i} & \geq 0 & & \text { for all } i \in V\} .
\end{aligned}
$$

4. (Echenique, Immorlica, Vazirani 1.15) Consider an instance of the stable matching problem with n doctors and n hospitals, each with capacity 1. Assume there are an odd number, k, of stable matchings. For each doctor d, order his or her k matches (with repetitions) according to his or her preference list and do the same for every hospital h. Consider assigning every doctor to the median hospital in his or her list. In this problem, we will prove that this is a stable matching.
To do so, first let μ_{1}, \ldots, μ_{l} be any l stable matchings. For each doctor-hospital pair (d, h), let $n(d, h)$ be the number of matchings in $\left\{\mu_{1}, \ldots, \mu_{l}\right\}$ where d is matched to h. Define $x_{d h}:=(1 / l) \cdot n(d, h)$. Show that x is a feasible solution to the fractional stable matching LP. For any k with $1 \leq k \leq l$, let $\theta=(k / l)-\epsilon$ where $\epsilon>0$ is smaller than $1 / l$. Consider the stable matching μ_{θ} formed by "rounding" the fractional stable matching x with θ via the procedure in class. ${ }^{1}$ Show that μ_{θ} matches each doctor d to the $k^{\text {th }}$ hospital in his or her ordered list of the l firms d is matched to in $\left\{\mu_{1}, \ldots, \mu_{l}\right\}$. Show similarly that hospital h is matched to the $(l-k+1)^{\text {th }}$ doctor in its list.
Use this to show that the aforementioned "median assignment" forms a stable matching.
5. Form a project team (ideally with a group of 2-3 students). Please list your teammates and write a few paragraphs about the topic you plan to work on.
[^0]
[^0]: ${ }^{1}$ See also Echenique/Immorlica/Vazirani Chapter 1, Section 5.1

